https://doi.org/10.1007/s00392-025-02625-4
Jonas Sundermeyer (Hamburg)1, C. Kellner (Hamburg)1, B. Beer (Hamburg)1, L. C. Besch (Hamburg)1, A. Dettling (Hamburg)2, L. F. Bertoldi (Milan)3, S. Blankenberg (Hamburg)1, D. Eckner (Nürnberg)4, I. Eitel (Lübeck)5, T. Graf (Lübeck)5, P. Horn (Mönchengladbach)6, J. Jozwiak-Nozdrzykowska (Leipzig)7, P. Kirchhof (Hamburg)1, S. Kluge (Hamburg)2, A. Linke (Dresden)8, U. Landmesser (Berlin)9, E. Lüsebrink (München)10, N. Majunke (Leipzig)7, N. Mangner (Dresden)8, S. Möbius-Winkler (Jena)11, P. Nordbeck (Würzburg)12, M. Pauschinger (Nürnberg)4, M. Pazdernik (Prag)13, A. Proudfoot (London)14, T. Rassaf (Essen)15, H. Reichenspurner (Hamburg)16, C. Scherer (München)10, C. Schulze (Jena)11, R. H. G. Schwinger (Weiden i. d. Oberpfalz)17, C. Skurk (Berlin)18, H. Thiele (Leipzig)7, E. B. Winzer (Dresden)8, D. Westermann (Freiburg im Breisgau)19, B. Schrage (Hamburg)1
1Universitäres Herz- und Gefäßzentrum Hamburg
Klinik für Kardiologie
Hamburg, Deutschland; 2Universitätsklinikum Hamburg-Eppendorf
Klinik für Kardiologie
Hamburg, Deutschland; 3Cardio Center, Humanitas Clinical and Research Center - IRCCS
Milan, Italien; 4Universitätsklinik der Paracelsus Medizinischen Privatuniversität
Klinik für Innere Medizin 8, Schwerpunkt Kardiologie
Nürnberg, Deutschland; 5Universitätsklinikum Schleswig-Holstein
Medizinische Klinik II / Kardiologie, Angiologie, Intensivmedizin
Lübeck, Deutschland; 6Städtische Kliniken Mönchengladbach GmbH
Kardiologie & Angiologie
Mönchengladbach, Deutschland; 7Herzzentrum Leipzig - Universität Leipzig
Klinik für Innere Medizin/Kardiologie
Leipzig, Deutschland; 8Herzzentrum Dresden GmbH an der TU Dresden
Klinik für Innere Medizin, Kardiologie und Intensivmedizin
Dresden, Deutschland; 9Deutsches Herzzentrum der Charite (DHZC)
Klinik für Kardiologie, Angiologie und Intensivmedizin
Berlin, Deutschland; 10LMU Klinikum der Universität München
Medizinische Klinik und Poliklinik I
München, Deutschland; 11Universitätsklinikum Jena
Klinik für Innere Medizin I - Kardiologie
Jena, Deutschland; 12Universitätsklinikum Würzburg
Medizinische Klinik und Poliklinik I
Würzburg, Deutschland; 13IKEM
Department of Cardiology
Prag, Tschechische Republik; 14St. Bartholomew's Hospital
London, Großbritannien; 15Universitätsklinikum Essen
Klinik für Kardiologie und Angiologie
Essen, Deutschland; 16Universitäres Herz- und Gefäßzentrum Hamburg
Klinik und Poliklinik für Herz- und Gefäßchirurgie
Hamburg, Deutschland; 17Kliniken Nordoberpfalz AG
Medizinische Klinik II, Kardiologie
Weiden i. d. Oberpfalz, Deutschland; 18Charité - Universitätsmedizin Berlin
CC 11: Med. Klinik für Kardiologie
Berlin, Deutschland; 19Universitäts-Herzzentrum Freiburg - Bad Krozingen
Innere Medizin III, Kardiologie und Angiologie
Freiburg im Breisgau, Deutschland
Background: Cardiogenic shock (CS) due to heart failure (HF) represents a substantial proportion of all CS cases. In this CS subtype, the prognostic impact of in-hospital left ventricular ejection fraction (LVEF) recovery remains unclear.
Purpose: The objective of this study is to evaluate the influence of in-hospital LVEF recovery on outcomes in HF-CS. Additionally, this study aims to investigate the role of patient characteristics and the use of different treatment strategies on LVEF recovery within this cohort.
Methods: In this international observational study, patients with HF-CS (e.g. caused by severe de-novo or acute-on-chronic HF; but not by acute myocardial infarction) from 16 tertiary-care centers in five countries were enrolled between 2010 and 2021. To investigate differences in patient characteristics and LVEF recovery, adjusted multivariable mixed effects linear and logistic regression models were fitted. Adjusted Cox regression models were used to evaluate the association between LVEF recovery and 30-day mortality (plus interaction term between MCS use and LVEF recovery).
Results: A total of 423 CS patients were analyzed: median age 59 (IQR 47.5-70.0) years, 296 (70.0%) male, median lactate level upon admission 4.6 (IQR 2.7-8.5) mmol/l, baseline pH 7.3 (IQR 7.2-7.4), 128 (30.5%) with prior cardiac arrest. The median baseline LVEF was 20% (IQR 15-30%), increasing to 30% (IQR 20-42.5%) at discharge. A total of 234 (55.3%) patients presented with in-hospital LVEF recovery. In comparison to patients without LVEF recovery, those with LVEF recovery were younger (57 vs. 64 years), had lower rates of known history of HF (47.0% vs. 68.8%) and hypertension (58.0% vs. 40.2%). Upon adjustment, age has a negative effect on LVEF recovery, with older age associated with lower LVEF recovery (OR 0.97, 95% CI 0.95 – 0.98, p<0.001; Beta -0.02, 95% CI -0.02 – -0.01, p<0.001). Other patient characteristics like cardiovascular comorbidities, existing HF medication, or shock severity during the index event were not different between groups. Patients with an inotropic score of 34 or higher had 41% lower odds of experiencing LVEF improvement (OR 0.59, 95% CI 0.35 – 1.00, p=0.049). Importantly, patients with improved in-hospital LVEF had a significantly lower mortality rate compared to those without LV recovery (2.7% for improved LVEF, 36.5% for patients without change in LVEF, 50.5% for worsened LVEF), with an adjusted hazard ratio for improved vs. intermediate/worsened LVEF of 0.05, 95% CI 0.03-0.15, p<0.001, Figure 1. In interaction analysis, LVEF recovery was not positively impacted by mechanical circulatory support (MCS).
Conclusions: In patients with HF-CS, in-hospital LVEF recovery was frequent and associated with lower 30-day mortality. However, it was not positively impacted by use of MCS, indicating that LVEF recovery could serve as a potential therapeutic target for outcome improvement, but not as a surrogate endpoint for efficacy in MCS trials.
