SARS-CoV-2 infects Human Cardiomyocytes via Vesicular Transport mediated by Inflammation and Oxidative stress

https://doi.org/10.1007/s00392-025-02625-4

Melina Tangos (Bochum)1, H. Budde (Bochum)1, M. Sieme (Bochum)1, V. Nageswaran (Bochum)2, P. Ramezani Rad (Berlin)3, D. Kolijn (Bochum)4, S. Zhazykbayeva (Bochum)1, M. Lodi (Bochum)5, S.-R. Sadat-Ebrahimi (Bochum)2, M. Herwig (Bochum)1, O. Overheu (Bochum)6, A. Reinacher-Schick (Bochum)6, C. Torres-Reyes (Bochum)7, M. Varatnitskaya (Bochum)8, M. Kacmaz (Bochum)1, H. Osman (Bochum)1, E. L. Robinson (Aurora)9, K. Jaquet (Bochum)10, I. Akin (Mannheim)11, J. Mustroph (Regensburg)12, K. Evert (Regensburg)13, N. Babel (Herne)14, D. Lindner (Freiburg im Breisgau)15, D. Westermann (Freiburg im Breisgau)16, H. G. Mannherz (Bochum)17, L. Leichert (Bochum)18, A. Haghikia (Bochum)2, I. El-Battrawy (Bochum)2, S. T. Sossalla (Gießen)19, N. Hamdani (Bochum)1

1Kath. Klinikum Bochum Institut für Forschung und Lehre (IFL), St. Josef Hospital Bochum, Deutschland; 2Klinikum der Ruhr-Universität Bochum Medizinische Klinik II, Kardiologie Bochum, Deutschland; 3Charité - Universitätsmedizin Berlin CC 11: Med. Klinik für Kardiologie Berlin, Deutschland; 4Ruhr-Universität Bochum Institut für Physiologie, Abt. für Systemphysiologie - MA2/148 Bochum, Deutschland; 5Ruhr-Universität Bochum Abteilung für Systemphysiologie Bochum, Deutschland; 6Katholisches Klinikum Bochum, St. Josef-Hospital Klinik für Hämatologie und Onkologie mit Palliativmedizin Bochum, Deutschland; 7Katholisches Klinikum Bochum, St. Josef-Hospital Innere Medizin Bochum, Deutschland; 8Ruhr-Universität Bochum Zelluläre und Translationale Physiologie Bochum, Deutschland; 9University of Colorado Anschutz Medical Campus School of Medicine, Division of Cardiology Aurora, Deutschland; 10Ruhr-Universität Bochum Molekulare Kardiologie Bochum, Deutschland; 11Universitätsklinikum Mannheim GmbH I. Medizinische Klinik Mannheim, Deutschland; 12Universitätsklinikum Regensburg Klinik und Poliklinik für Innere Med. II, Kardiologie Regensburg, Deutschland; 13Universität Regensburg Institut für Pathologie Regensburg, Deutschland; 14Marienhospital Herne Zentrum für Translationale Medizin mit S. Immunologie und Transplantation Herne, Deutschland; 15Universitäts-Herzzentrum Freiburg - Bad Krozingen Klinik für Kardiologie und Angiologie Freiburg im Breisgau, Deutschland; 16Universitäts-Herzzentrum Freiburg - Bad Krozingen Innere Medizin III, Kardiologie und Angiologie Freiburg im Breisgau, Deutschland; 17Ruhr-Universität Bochum Anatomie und Molekulare Embryologie Bochum, Deutschland; 18Ruhr-Universität Bochum Mikrobielle Biochemie Bochum, Deutschland; 19Universitätsklinikum Gießen und Marburg GmbH Medizinische Klinik I - Kardiologie und Angiologie Gießen, Deutschland

 

Background and aim: SARS-CoV-2 infection is associated with increased cardiovascular morbidity and mortality, including myocarditis. However, the mechanisms how SARS-CoV-2 enters and infects cardiomyocytes and endothelial cells remains unclear. Here, we explore the role of extracellular vesicles (EV) as mediators of communication between cardiomyocytes and endothelial cells during infection. EVs are lipid-bound vesicles released from a variety of cell types and can be found in all biological fluids. They are known for their pivotal role in transporting proteins, RNA, DNA, lipids, and metabolites between cells and organs.

Methods: We performed imaging of cardiac tissue, EVs, and serum derived from SARS-CoV-2 patients via confocal microscopy and transmission electron microscopy (TEM). Furthermore, cardiac tissue was used for a mass spectrometry protocol, specifically developed to detect oxidized cysteines in proteins (OxICAT labeling). The Gene Ontology (GO) analysis was performed to assess oxidative stress-affected pathways and cellular components. To elucidate the effects of SARS-CoV-2 patient-derived EVs on mitochondrial function, inflammatory, apoptotic, and glycolytic events, we conducted endothelial cell culture experiments. For this purpose, serum-derived EVs were isolated via polyethylene glycol precipitation and subsequent size exclusion chromatography (SEC).

Results: Our results verify the close proximity/interaction of EVs and SARS-CoV-2 components in cardiac tissue, as well as serum of infected patients. Mass spectrometry revealed a high burden of oxidative stress inside cardiac tissue, reflected by highly oxidized cysteines in various proteins involved in exosomal traffic and mitochondrial function. In addition, patient-derived EVs were able to trigger inflammatory events and reduce energy metabolism in endothelial cells.

Conclusion: Taken together, our data suggest that SARS-CoV-2 infects cardiomyocytes and endothelial cells. Extracellular vesicles (EVs) are a prominent alternative route of virus dissemination. Our results further hint at the potential of EVs to affect macroenvironment causing alterations of protein functionality and expression, enzyme activity, inflammation, and oxidative stress, ultimately causing an impairment of mitochondrial function. We propose that EVs are an important mediator of cellular stress signals and viral particles during infection, suggesting their potential to trigger severe cardiomyocyte damage and subsequent cell death.

 

 

 

Diese Seite teilen