https://doi.org/10.1007/s00392-025-02625-4
1Universitätsklinikum Bonn Medizinische Klinik und Poliklinik II Bonn, Deutschland; 2Universitätsklinikum Hamburg-Eppendorf Klinik für Kardiologie Hamburg, Deutschland; 3Gemeinschaftspraxis Kardiologie Köln am Neumarkt Köln, Deutschland; 4Heart Center, Molecular Cardilogy Internal Medicine-II Bonn, Deutschland
Rationale: Calcific aortic valve stenosis (CAVS) is a major contributor to cardiovascular death in the elderly population worldwide. MicroRNAs (miRNAs) are highly dysregulated in patients with AVS undergoing surgical aortic valve replacement (SAVR). However, miRNA-dependent mechanisms regulating inflammation and calcification or miRNA-mediated cell-cell crossstalk during the pathogenesis of AVS are still poorly understood. Here, we explored the role of extracellular vesicles (EV)-associated miR-145-5p, which we showed to be highly upregulated upon valvular calcification in AVS in mice and humans.
Methods: Human TaqMan miRNA arrays identified dysregulated miRNAs in CAVD tissue explants from AVS patients compared to non-calcified valvular tissue explants of patients undergoing SAVR. Echocardiographic parameters were measured in association with the quantification of dysregulated miRNAs in a murine AVS model. In vitro calcification experiments were performed to explore the effects of EV-miR-145-5p on calcification and crosstalk in valvular cells. To dissect molecular miRNA signatures and their effect on signaling pathways, integrated OMICS analyses were performed. RNA sequencing (RNA-seq), high-throughput transcription factor (TF), osteogenesis-, and proteome arrays showed that a number of genes, miRNAs, TFs, and proteins are crucial for calcification and apoptosis, which are involved in the pathogenesis of AVS.
Results: Among several miRNAs dysregulated in valve explants of AVS patients, miR-145-5p was the most highly gender-independently dysregulated miRNA (AUC, 0.780, p-value, 0.01). MiRNA arrays utilizing patient-derived- and murine aortic-stenosis samples demonstrated that the expression of miR-145-5p is significantly upregulated and correlates positively with cardiac function based on echocardiography. In vitro experiments confirmed that miR-145-5p is encapsulated into EVs and shuttled into valvular interstitial cells. Based on the integrated OMICs results, miR-145-5p interrelates with markers of inflammation, calcification, and apoptosis. In vitro calcification experiments demonstrated that miR-145-5p regulates the ALPL gene, a hallmark of calcification in vascular and valvular cells. EV-mediated shuttling of miR-145-5p suppressed the expression of ZEB2, a negative regulator of the ALPL gene, by binding to its 3' untranslated region to inhibit its translation, thereby diminishing the calcification of target valvular interstitial cells.
Conclusion: Elevated levels of pro-calcific and pro-apoptotic EV-associated miR-145-5p contribute to the progression of AVS via the ZEB2-ALPL axis, which could potentially be therapeutically targeted to minimize the burden of AVS.