1Universitätsklinikum Düsseldorf Klinik für Kardiologie, Pneumologie und Angiologie Düsseldorf, Deutschland; 2Schön Klinik Neustadt Klink für Innere Medizin und Kardiologie Neustadt in Holstein, Deutschland; 3Evangelisches Krankenhaus Düsseldorf Klinik für Kardiologie Düsseldorf, Deutschland; 4Universitätsklinikum Essen Klinik für Kardiologie und Angiologie Essen, Deutschland; 5Asklepios Klinik St. Georg Kardiologie & internistische Intensivmedizin Hamburg, Deutschland; 6Heinrich-Heine-Universität Düsseldorf Düsseldorf, Deutschland; 7Universitätsklinikum Düsseldorf Klinik für Herzchirurgie Düsseldorf, Deutschland; 8Universitätsklinikum Düsseldorf Klinik für Kardiovaskuläre Chirurgie Düsseldorf, Deutschland; 9Universitäres Herz- und Gefäßzentrum Hamburg Klinik und Poliklinik für Herz- und Gefäßchirurgie Hamburg, Deutschland; 10Lithuanian University of Health Sciences Kaunas, Litauen
Purpose: The aim of the present study was to assess the role of the posterior descending ganglionated plexus (PD-GP) for neural control of ventricular electrophysiology.
Methods and Results: First, a systematic literature review was performed revealing the presence of the PD-GP in dogs, swine and humans. To investigate whether the mouse may be useful as an animal model, a retrospective analysis of whole-mount immunohistological stained murine hearts was conducted (n=43) indicating the presence of ventricular ganglionated plexus in only 10% of hearts. Therefore, functional studies were performed in an ex-vivo retrograde-perfused porcine model (n=3) at baseline (pacing with a cycle length of 600 ms), during PD-GP high-frequency and local nicotine stimulation (Figure A+B). Wave propagation characteristics were determined by epicardial activation mapping demonstrating increased dispersion of conduction velocity during high-frequency (8.52±2.24 radian vs. 2.79±0.89 radian; P=0.018) and nicotine stimulation (19.79±6.49 radian vs. 2.79±0.89 radian; P=0.044) compared to paced rhythm (Figure C). Activation recovery intervals (ARIs) were analyzed with a multi-electrode sock placed around the epicardium displaying that high-frequency stimulation prolonged ARIs in the posterior (257.8±6.7 ms vs. 244.8±1.9 ms; P=0.044) and basal (258.1±4.2 ms vs. 244.8±1.9 ms; p=0.039) right ventricle compared to the posterior left ventricle, while nicotine did not affect ARIs (right ventricle: 255.7±29.0 ms vs. left ventricle: 245.0±29.3 ms; P=0.677) (Figure D). Morphological analysis of explanted human hearts confirmed the presence of the PD-GP in close relationship to the posterior descending coronary artery within epicardial adipose tissue (Figure E+F).
Conclusions: Our findings suggest a species-dependent functional relevance of the PD-GP, with its modification in centrally denervated swine hearts resulting in global and regional changes in ventricular electrophysiological control. Clinical translation might be challenged by adjacent anatomical structures underlining the need for additional morphological and functional evaluation.
Figure: The role of the PD-GP for neural control of cardiac electrophysiology.