Influence of fully-automated AI based CT-analysis on TAVI planning

https://doi.org/10.1007/s00392-025-02625-4

Mani Arsalan (Frankfurt am Main)1, T. Duske (Mainz)2, H. Schneider (Frankfurt am Main)1, A. R. Tamm (Mainz)3, P. C. Seppelt (Frankfurt am Main)4, M. Geyer (Mainz)5, K. D. Piayda (Gießen)6, R. S. von Bardeleben (Mainz)2, D. Leistner (Frankfurt am Main)4, M. Hell (Mainz)5, T. Walther (Frankfurt am Main)1, F. Kreidel (Kiel)7

1Universitätsklinikum Frankfurt Klinik für Thorax-, Herz- und Thorakale Gefäßchirurgie Frankfurt am Main, Deutschland; 2Universitätsmedizin der Johannes Gutenberg-Universität Mainz Zentrum für Kardiologie im Herz- und Gefäßzentrum Mainz, Deutschland; 3Gesundheitscentrum Mainz Mitte Interventionelle Kardiologie Sportmedizin Sportkardiologie Mainz, Deutschland; 4Universitätsklinikum Frankfurt Med. Klinik III - Kardiologie, Angiologie Frankfurt am Main, Deutschland; 5Universitätsmedizin der Johannes Gutenberg-Universität Mainz Kardiologie 1, Zentrum für Kardiologie Mainz, Deutschland; 6Universitätsklinikum Gießen und Marburg GmbH Medizinische Klinik I - Kardiologie und Angiologie Gießen, Deutschland; 7Universitätsklinikum Schleswig-Holstein Innere Medizin III mit den Schwerpunkten Kardiologie, Angiologie und internistische Intensivmedizin Kiel, Deutschland

 

Background
Recently, a fully automated artificial intelligence (AI)-based computed tomography (CT) analysis software became available to simplify pre-procedural planning for transcatheter aortic valve implantation (TAVI). Precise measurements are of upmost importance for selecting the optimal valve prosthesis and thus achieving excellent clinical results. The aim of this study was to compare the semi-automated 3mensio (3M) software to the fully-automated Laralab platform (AI).

Methods
Patients with symptomatic severe aortic stenosis undergoing TAVI were retrospectively enrolled in two heart centres. The pre-procedural data set was analysed conventionally with the semi-automated, and the AI-based software package. We retrospectively simulated prothesis size choice based on the AI measurement and compared findings to the conventional valve sizing.

Results
247 patients were included in the analysis. The average annulus diameter was 24.5±2.3 mm (3M) vs. 24.4±2.4 mm (AI), the Mean Absolute Error (MAE) was 0.6 mm, the Mean Absolute Percentage Error (MAPE) was 2.6%, respectively. The mean annulus perimeter was 77.7±7.0 mm (3M) vs. 77.0±7.4 mm (AI), MAE: 2.0 mm, MAPE: 2.6%. The mean annulus area corresponded to 470.4±85.4 mm2 (3M) vs. 467.1±89.2 mm2 (AI), MAE: 21.2 mm2, MAPE: 4.6%. The intraclass correlation coefficients (ICCs) of all above mentioned parameters was >0.95, thus showing an excellent correlation between the two methods.
Prosthesis selection based on AI measurements alone would have resulted in a different valve size than the one actually implanted in 21% of patients. However, a simulation of prosthesis selection based on 3M measurements alone showed similar results with a different valve size in 14% of cases.  (Figure 1)
 
Conclusions
In this retrospective analysis, an AI-based analysis of pre-procedural CT data sets showed excellent correlation with conventional measurement of the aortic annulus. However, like the semi-automated analysis, experienced users are still required to take all anatomical conditions into account in order to ensure optimal valve and valve size selection.

Diese Seite teilen