https://doi.org/10.1007/s00392-025-02625-4
1Universitäts-Herzzentrum Freiburg - Bad Krozingen Klinik für Kardiologie und Angiologie Freiburg im Breisgau, Deutschland; 2Universitäts-Herzzentrum Freiburg - Bad Krozingen Klinik für Kardiologie und Angiologie Bad Krozingen, Deutschland; 3Justus-Liebig-Universität Giessen Medizinische Klinik I, Kardiologie Bad Nauheim, Deutschland; 4Universitäts-Herzzentrum Freiburg / Bad Krozingen Rhythmologie Bad Krozingen, Deutschland; 5Universitäts-Herzzentrum Freiburg / Bad Krozingen Klinik für Kardiologie und Angiologie Bad Krozingen, Deutschland; 6Karlsruher Institut für Technologie (KIT) Institut für Biomedizinische Technik Karlsruhe, Deutschland; 7Universitäts-Herzzentrum Freiburg - Bad Krozingen Innere Medizin III, Kardiologie und Angiologie Freiburg im Breisgau, Deutschland
Methods and Results: The study is based on the MIMIC-IV-ED dataset from the Beth Israel Deaconess Medical Center. We analyzed all patients presenting to the ED with acute chest pain as a possible sign of an acute coronary syndrome. The analysis was conducted on 5,888 patients who had been admitted to hospital and underwent coronary angiography. The median age was 54.8 years, 52.6 % were female. Within this group, 593 patients (3.02%) suffered an arrhythmic event (ventricular fibrillation or ventricular flutter, cardiac arrest or bradycardia treated with pacemaker insertion or external pacing) during their inpatient stay. The dataset was split into training, validation and testing subsets with a 70:15:15 ratio. A convolutional neural network (CNN) based machine learning model was trained to identify those patients who experienced an arrhythmic event, utilizing the initial raw 12-lead ECG data from the ED as input data. Our model reached a weighted accuracy of 0.89 with a specificity of 0.91 to identify chest pain patients with high risk for arrhythmic events.
Conclusions: Our AI model using the initial ECG data shows a promising way to identify patients with chest pain in the ED with an increased risk of an arrhythmic event during hospitalization. Further investigations are being carried out to optimize the predictive power of this model based on other available values like laboratory parameters.