Atrial fibrillation promotes ventricular arrhythmogenesis

https://doi.org/10.1007/s00392-025-02625-4

Paul Spangler (Regensburg)1, T. Stehle (Regensburg)1, P. Tirilomis (Göttingen)2, T. Körtl (Gießen)3, T. Uhe (Leipzig)4, L. M. Schreiner (Regensburg)1, L. Stengel (Regensburg)1, C. Schmid (Regensburg)5, T. Tirilomis (Göttingen)6, L. S. Maier (Regensburg)1, R. Wachter (Leipzig)4, S. T. Sossalla (Gießen)3, S. Pabel (Regensburg)1

1Universitätsklinikum Regensburg Klinik und Poliklinik für Innere Med. II, Kardiologie Regensburg, Deutschland; 2Universitätsmedizin Göttingen Herzzentrum, Klinik für Kardiologie und Pneumologie Göttingen, Deutschland; 3Universitätsklinikum Gießen und Marburg GmbH Medizinische Klinik I - Kardiologie und Angiologie Gießen, Deutschland; 4Universitätsklinikum Leipzig Klinik und Poliklinik für Kardiologie Leipzig, Deutschland; 5Universitätsklinikum Regensburg Herz-, Thorax- und herznahe Gefäßchirurgie Regensburg, Deutschland; 6Universitätsmedizin Göttingen Thorax-, Herz- und Gefäßchirurgie Göttingen, Deutschland

 

Background:  In patients with atrial fibrillation (AF) ventricular arrhythmias are a leading cause of death. This study aims to identify potential mechanisms by which atrial fibrillation (AF) promotes ventricular arrhythmias.

Methods and results: The ventricular phenotype in AF patients was characterized using human ventricular myocardium samples from individuals with normal ejection fraction and either sinus rhythm (SR) or AF (EF > 50%, LV myocardium from aortic valve replacement surgery, comparable clinical characteristics). Whole-cell current clamp experiments were conducted in isolated human ventricular cardiomyocytes. In cells from AF patients, delayed afterdepolarizations (DADs) were significantly more frequent (8.87±1.59 DADs/min, n=44 cardiomyocytes/ 11 patients) compared to SR patients (4.06±0.76 DADs/min, n=59/15).

Confocal microscopy (Fluo-4 AM) revealed that a significantly higher proportion of ventricular cardiomyocytes from AF patients exhibited diastolic Ca²⁺ waves (20%, n=60/5) compared to SR patients (7.2%, n=134/10). To further investigate these findings, we conducted in-vitro AF simulation in murine ventricular cardiomyocytes by electric pacing at 60 bpm with a beat-to-beat variability of 40%. AF simulation led to a higher occurrence rate of DADs (9.10±1.25 DADs/min, n=51 cardiomyocytes/ 22 mice) compared to SR simulation (6.19±1.06 DADs/min, n=46/22). Confocal measurements identified increased occurrence of diastolic Ca2+ waves and a higher diastolic Ca²⁺ leak in form of elevated Ca²⁺ spark frequency after AF simulation compared to SR simulation (n=95-112/11-14 mice each). Using Western blot analysis of murine ventricular cardiomyocytes, we uncovered that AF-simulation was associated with increased oxidation of CaMKII at the regulatory Met281/282 oxidation site, which is known to increase CaMKII activity (n=10 mice each). To test the involvement of oxidative CaMKII activation in the proarrhythmic effects of AF on the ventricle we genetically ablated the CaMKII oxidation site (Met281/282) in MMVV knock-in mice. In ventricular cardiomyocytes from MMVV mice after AF simulation, we observed no significant difference in the number of DADs between SR simulation (n=27/8) and AF simulation (n=22/6). In MMVV mice, AF simulation did not change diastolic Ca2+ wave frequency or diastolic Ca2+ spark frequency (n=102-119/13 each).

Conclusion: Our study reveals that AF is associated with increased ventricular arrhythmic triggers in patients. We could demonstrate that AF promotes ventricular arrhythmogenesis by altered Ca2+ handling and an oxidative activation of CaMKII. These findings offer new mechanistic insights and potential therapeutic strategies for addressing the link between AF and ventricular arrhythmias.

Diese Seite teilen